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1. INTRODUCTION

The prediction of boundary layer separation continues to be an important

basic research problem in fluid dynamics with many applications in aerodyna-

mics, propulsion, fluidics devices, etc. The numerous theoretical and experi-

mental studies that have been carried out to date have established three

important features of this problem that cannot be accounted for in the classi-

cal boundary layer theory approach. (1) Viscous-inviscid interaction: the

streamwise pressure gradient is not prescribed but is an unknown determined

by the boundary layer displacement thickness distribution solution. (2) Up-

stream influence: the local-behavior at some station x is affected by

conditions downstream as well as those upstream, the mathematical character

of the flow being of an elliptic nature rather than parabolic (this is true

even for a supersonic inviscid flow). (3) Regions of reversed flow and possi-

ble reattachment: these introduce the well-known.possibility of a singularity

where the wall shear vanishes plus the numerical difficulties associated with

imbedded regions of reversed flow near the surface. To complement the various

numerical methods that are currently being developed to treat these features

(Ref. 1,2 .) the present-paper describes an approximate analytical approach to

the boundary layer-separation-problem for subsonic laminar separation bubble-type

flows.

Our. analysis is based on a triple-deck flow model which is an extension

of the earlier methods of Von Karman and Millikan, Stratford, 5 and Curle to

include the aforementioned effects of viscous-inviscid interaction, upstream

ihfluence, and flow reversal and reattachment. The boundary layer is split up

into two appropriately-matched regions: a thin viscous sublayer region of

negligable inertia near the wall underneath a thick outer layer of nearly



1. INTRODUCTION

The prediction of boundary layer deceleration and separation in regions of

adverse pressure gradient continues to be an unsolved problem of fundamental

practical importance in aerodynamics. Separation, for example, not only signi-

ficantly influences the local flow field but also can influence the overall

forces and moments acting on a wing or body. Although significant progress has

been made in the theory of non-separated laminar and turbulent flows, existing

methods have a number of deficiences which introduce serious drawbacks, when

separation occurs: (a): the flow model breaks down under conditions of vanish-

ingly-small wall shear and reversed flow: (b) they neglect the important

effect of viscous-inviscid interaction induced by the boundary layer displace-

ment thickness growth, including the attendant upstream influence; (c) very

little has been done to treat the turbulent case; (d) the numerical approaches

involved are usually very lengthy and expensive to run and totally impractical

for use in advanced engineering design calculations and parametric studies.

As a first step toward remedying these deficiences, a new approximate three--

layered theoretical flow model of boundary layer separation including viscous-

inviscid interaction was conceived for the case of subsonic two dimensional

steady laminar flow (see Fig. 1). In this approach, the boundary layer is

split up into two appropriately-matched regions: a thin viscous sublayer region

(having negligable inertia) near the wall overlaid by a thick outer layer of

nearly inviscid (but highly rotational) flow. Inviscid interaction is accounted

for by coupling the perturbed inviscid flow to the total displacement thickness

growth of the boundary layer 6*(x) using a linearized source distribution rep-

resentation of 6"(x). The purpose of the research project was to study the

theoretical development and numerical implementation of this "triple deck"

flow model concept for laminar boundary layer separation problems,

1I



with the ultimate follow-on goal\of extending it to the case of fully developed

two-dimensional turbulent flow separation.

2. PRESENT STATUS OF WORK

The proposed triple deck interactive model for laminar flow has been

completely worked out and some promising preliminary numerical results obtained,

including development of a small perturbation analysis verifying the concept of

the suggested iterative calculation approach. These results were documented

and presented in an AIAA paper last summer; a copy of this, which contains all

the details of the model analysis,is given in the Appendix.

During the remainder of last summer, the numerical feasibility of the model

for treating separated flow conditions was further established, albeit in a very

inefficient form unsuited for routine applications. Subsequently, working at

a very low level of effort owing to a lack of student programmer time, we have

been slowly developing a far more efficient algorithm to implement the inter-

active model.

I(\
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SUBSONIC LAMINAR BOUNDARY LAYER SEPARATION

AND REATTACHMENT WITH VISCOUS-INVISCID INTERACTION*

Abstract

A theory is developed for nonsimilar laminar boundary layers 
with separa-

tion, reversed flow and reattachment including 
global subsonic viscous-inviscid

interaction and upstream influence with application to separation 
bubble pro-

blems. The approach is based on an approximate triple-deck 
flow analysis which

provides a unified, non-singular analytical 
model over a wide range of both

attached and reversed flow states. The displacement effect on the inviscid

flow is represented by a thin airfoil integral with 
a leading edge correction

by Lighthill's rule. A closed form solution of .this model is given 
which shows

the essential features of the problem and supports the 
numerical approach. A

global iteration calculation method is devised 
which is free from the usual

Crocco-Lees critical points occuring in interaction problems. Application to

the case of a. linearly-decelerating basic inviscid flow is discussed 
including

some preliminary numerical results.

*This work was partially supported by AFOSR under grant 
72-2173 and by the NASA

Langley Research Center under grant NGR 47-004-119; their support is gratefuly

acknowledged.



NOMENCLATURE

a Parameter related to inner layer thickness

c Characteristic length

C 2(p-p )/pu 2  = l-(u /u )2
p o e e e

o o

/F 2T/pu2

0

N Parameter in inner layer solution

p Static pressure

Rec fu x/p, pue C/1
o o

T T/TB

u Velocity component along x

v Velocity component along y (normal to surface)

x,y Coordinates along and normal to surface, respectively with
x = x/,C being non-dimensional.

6 Boundary layer thickness

6 BLocal Blasius thickness = 5.2x/(iC)epbasic 4 Re 1/ 2

6* Displacement thickness

6 1.73x(l-Cpbasi1/4 Re 1/2

0* Momentum thickness

i Coefficient of viscosity

Stream function, location of streamline

p Density

v Kinematic viscosity

T Wall shear stress = p(au/ay)w

B Local flat plate value = .332pu 2 (1-C )3/4 Re -/2

basic prescribed non-interacted pressure distribution values

B Local Blasius (flat plate) value

.4;;



C Cut-off point of basic pressure gradient

F End of Interaction Region

j Location of inner-outer layer interface

L Effective flat plate origin for favorable initial pressure gradient

T Effective flat plate origin for. downstream of interaction

m Maximum u station
e

o Start of adverse pressure gradient

sep Separation point

i Start of interaction

w Conditions at wall



inviscid (but highly rotational) flow. Inviscid interaction is accounted for

by coupling the perturbed inviscid potential flow outside the boundary layer

to the displacement thickness growth 6*(x). There are several reasons for our

selection of this approach. First, in the absence of viscous interaction

effects the two-deck boundary layer model has been found to give very accurate

predictions of both laminar and turbulent boundary layer behavior in adverse

pressure gradients up to separation for a wide variety of flows including those

with surface mass transfer.6 Hence its extension to include interaction, up-

stream influence and separated flow would provide a valuable and relatively

inexpensive tool for making engineering analyses of separating flow. Second,

our three-layer model approach is strongly suggested by the recent investiga-

7tion of Stewartson and Williams, who show that the asymptotic structure of

incipiently-separating laminar boundary layer flow at high Reynolds numbers

does indeed have such a triple-deck character. Third, the relative simplicity

of the analysis provides a clear insight to all the essential features and

difficulties of the separation problem and lends itself to very straight-

foreward and inexpensive numerical implementation.

In Section 2 the basic simplifying assumptions, the analytical formula-

tion and the salient features of the model are described. It is shown that

the model has a heretofore-unrecognized double-branched solution character

that enables it to pass through separation and reattachment without singulari-_

ties and provide a unified description of a wide range of both attached and

separated flow states. Section 3 outlines a closed form method of solution

which displays all the essential features of the problem and which also sup-

ports our subsequent numerical approach. In Section 4, a global iteration

technique of applying this model to the numerical calculation of subsonic

viscous-inviscid interaction problems in adverse pressure gradients including

2



separation is then discussed, including some preliminary results for separa-

tion bubbles occuring in a linearly-decelerating basic. inviscid flow. We

conclude in Section 5 with a brief discussion of further improvements and

extensions of the present theory.

2. FORMULATION OF ANALYSIS

Assumptions

We first introduce a number of basic simplifying assumptions. a) As a

convenient idealization to illustrate the essential features of our approach,

the flow is assumed two-dimensional and steady (neither of which is strictly

true in practice)3'8 and incompressible, although the present theory can be

readily extended to compressible subsonic transonic or supersonic flow in-

cluding heat transfer. b) The usual high Reynolds number boundary layer-type

approximations are adopted including the neglect of second order curvature

effects. While this is not strictly valid near separation and reattachment

points, it does not give significant errors unless the "fine structure" of

the flow around these points is of interest. Indeed, the recent studies of

Lees and Kleinburg,9 Stewartson,7,10 and Werle and Davis11 have all shown that

the use of boundary layer equations to predict separating flows is acceptable

provided the pressure distribution is determined by viscous-inviscid interac-

tion and the separation bubble region is thin. c) The flow is assumed to be

laminar which is an idealization to illustrate the basic features of the

analytical method and of course is of practical interest for low Reynolds

number cases. The resulting analysis appears readily extendable to the tur-

bulent case with the use of a suitable eddy viscosity model, since the essential

physical features of the approach are independent of the details of the

viscosity law. d) The global viscous-inviscid interaction is described by

3



coupling the perturbed inviscid flow to the boundary layer by means of a

small disturbance source distribution ("thin airfoil") model of the displace-

ment thickness effect, thereby including consideration of the upstream in-

fluence of downstream events (such as reattachment)*. (e) The types of flow

considered here are those in which the basic non-interacting pressure distribu-

tion C is zero in the region-O < k x ofollowed-by-an arbitrary- :
p,basic 0-

but finite length of continuous pressure rise over x < x < x , see Fig. 1
c o

(this zero pressure gradient condition for x < xo will be subsequently relaxed

as discussed below. In the constant Cpbasic region downstream of this cut-

off point xc, the boundary layer is assumed to approach a flat plate behavior

appropriate to this new pressure level. Although in the present study we em-

phasize the case of reattaching laminar separation bubbles, the general approach

is also applicable to other types of downstream boundary conditions such as

those pertaining to a wake.

Flow Model-Governing Equations

Following the earlier ideas of Von Karman and Millikan as improved by

Stratford and Curle, and more recently justified by Stewartsons asymptotic

analyses of viscous interaction effects, the flow into an adverse pressure

gradient region can be divided into three essential layers (see Fig. 1). The

viscous boundary layer region for x > x is divided into two strata: a thin

"local equilibrium" sublayer 0 < y < yj near the surface where inertia effects

are negligible, overlaid by a thick outer layer of essentially inviscid but

rotational flow with a small viscous total head loss that is conveniently

* A vortex sheet model could also be used; in fact the present boundary layer
model can be mated to any suitable numerical potential flow program (such
as Hess and Smithl2 ).
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approximated by a local flat plate value. The third layer is the disturbed

outer inviscid flow which globally interacts with the boundary layer. Since

the analytical formulation of this two-layered boundary layer model has already

been discussed in detail by several authors,
5'6 only a brief outline need be given

here with emphasis on the new features not considered heretofore.

Regarding the thick nearly-inviscid rotational outer flow layer y L yj

the velocity along any streamline x, p is approximated by the variable total

head Bernouli equation

2 
2  2(p-p) 

(1)

Ux, [UB]x, p

where u is the local flat plate (Blasius) solution pertaining to Cp,basic

which approximately accounts for the viscous total head loss along the stream-

line. Successive differentiations of Eq. (1) with respect to 4 and neglecting

the lateral pressure gradient yields the two equations

B u0

The flow in the thin inner layer 0 y y (x) has negligible inertia and

lateral pressure gradient (p p.) and following Curle may be described

by the following velocity profile which satisfies the 
momentum Eqn. as

y + 0:

u =T- y/ + (dp/dx) y /2p + a(x) yN/ (4)
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where r =.(au/3y) is the wall shear stress, the function a(x)-is related to.

the unknown value of yj as determined by matching with the outer solution,

and N is an arbitrary parameter with N 3. The two layers are matched by

requiring that 4, u, 3u/ay and 82u/9y2 each be-continuous at y = yj, 
these

conditions being sufficient to determine r, a(x), yj and j with N appearing

as an arbitrary profile parameter (the value N = 3.043 recommended by Curle6

for unseparated non-interacting flows in adverse pressure gradients is 
used

here without change). As in Stratford's original work;* the inner layer is

presumed to lie within the linear region of the Blasius profile; consequently

the aforementioned inner-outer matching yields the following approximate

analytical relationship between the skin-friction and surface 
pressure dis-

tribution:

xC.kdC/dxj2 .0122 (1-T)3 1 + 3(N21) 3 13( 3 (5a)

PC P .(N +3) I 3N2 (1+1)(N-2)(2

= .0104 (1-T) 3(1+2.02T) for N 3.04 (5b)

2 3/4 -1/2
where T E T/ with B .332 p 2eo (1-Cp,baic ) Re . It is emphasized

that this relation is perfectly general as regards the nature of the pressure

field; it refers either to a prescribed or freely-interacting C (x).

Although Curle has shown that the assumption uB 
= B y/P in the inner

layer limits the pressure coefficient to values less than 
about 0.11, both his

results and our own calculations indicate that accurate predictions of separa-

tion from Eq. (5) may still be obtained for values of pressure coefficient 
at

separation as high as 0.25. Moreover, since viscous-inviscid interaction

further reduces the pressure level near separation (see below), this limitation

6



on Eq. 5 is not an important one in the present study. A more significant

limitation stems from the neglect of the 
inertia effect (flow history) of the

inner layer; Eq. (5) consequently preducts 
that T = TB wherever the local

pressure gradient vanishes, which certainly 
yields inaccurate results for

prescribed pressure distributions with 
maxima or minima or for viscous-inviscid

interactions involving local overshoots in the pressure.

The unknown inner layer thickness is given by the 
aforementioned matching

as

N-l (1-T)Cf (6)

Yj N-2 dC-/dx

with a limiting value of zero as the pressure 
gradient vanishes. The corre-

sponding total boundary layer displacement 
thickness is composed of contribu-

tions from the inner and outer layer regions as 
follows:

Uinne dy + out dy (7a)

u u
0 ey e

where 6 is the effective edge of the boundary layer (Appendix 
A). The dominant

contribution to the displacement thickness is from the 
inner layer. Using

Eqs. (1) , (4) and (6), Eq. (7a) becomes

P* I [-i 1+ T)2 - C 1 (1c ) dy (7b)
-- [

As shown in Appendix A, this can be approximated 
by the following expression

which proves useful later:



6* + - + (-T) (7
B B 26

which correctly passes over to the result 6* *+ B* in the absence of pressure

gradient (yj + 0 where 6 and B are the local flat plate displacement thick-

nesses..

The effect of the global interaction between the boundary layer and the

external inviscid flow is treated by correcting the original potential flow

for the total bouhdary layer displacement effect following the approach pre-

viously used successfully by a number of investigators, in which the velocity

field perturbation due to the displacement thickness is represented by an

equivalent source-sink distribution. Thus, for example, using the small dis-

turbance approximation to Bernouli's equation and evaluating the source-sink

distribution effect at y = 6* as recommended by Prestonl3 (who found that

this gave good agreement with experiment for airfoil calculations), the in--

teracting pressure field can be expressed as C = C + AC where
p p,basic p

-2 '-C (x-)d*-- ' (E)dC
p I- p,basic 2 * 2 (8a)

0 (x-) +6 (x)

is the local correction to the prescribed basic (non-interacting) pressure due

to the entire displacement thickness with 5 the dummy variable of integration.

Note that the integral is not singular at the source point ( = x, which is

advantageous in the numerical work. As shown in Appendix B, examination of the

limits and integration by parts enables Eq. 8a to be expressed for computational

purposes in the form

8



C - /p,basic 6 (x- (x-) 2 (8b)
P ' (x *2 *7 .x - 2 2 2 j

where x. + 0 and xf are the effective start and end, respectively, of the

viscous-inviscid interaction region with xf >> xc. Alternatively, using the

classical "thin airfoil integral" formulation of AC in which the source-sink
P

effect is evaluated along y = 0 instead of y 
= 6* with the resulting leading

edge singularity eliminated by the so-called Lighthill rule correction 
factor 4,

Eq. (8a) reduces to the following well-known singular integral equation

requiring the use of the Cauchy principal value at x = 5:

2 xCPa (d6*/6x)dE (8c)
Cp i ,asic r x-

where r = (6 2/2x) = 1.5 Re -1 = 1.5 2. Excluding the small higher order
o B x+0 c

region of size r0 near the leading edge, this integral has the important pro-,

perty of vanishing identically for the flat plate parabolic distribution 
6*

6* B x ;' hence from Eq. 7C we see that only the pressure gradient 
effect

on 6P effectively contributes to the viscous interaction-induced pressure field.

Important Features Pertaining to Separation

For illustrative purposes, we consider the case of linearly-retarded flow

u /u =(1 - x)[C = (2-x)x] for which an exact solution of the boundary
e o p,basic

layer equations has been obtained by Howarth.
15 The resulting solution of

Eq. (5) for the shear stress distribution along the wall is shown in Fig. 2.

From this Figure we can perceive several important features of.the present approach.

tThis result may be understood from the fact that there is no pressure gradient

immediately downstream of the nose of a parabola in incompressible flow.

9



First, we see that' the two-layer boundary layer model is in excellent

agreement with the exact solution, giving an accurate account of the decrease

in skin friction up to separation including the location of separation itself

around xep =..12. Actually, the two-layer result continues slightly downstream
sep

of this x corresponding to a small reversed flow (further comment on this is
sep

given below).

Second, it is observed in Fig. 2 that the solution is double-valued: for

each value of x and C one obtains two values of shear stress, one positive

and one negative, corresponding to attached and reversed flows, respectively

(note that Eq. 5b is a quartic in T with either a pair of real and a pair of

imaginary roots or two pairs of imaginary roots). Moreover the upper and lower

"branches" of this solution are seen to be continuously connected. This

heretofore-overlooked double-valued nature of the two-layer boundary layer

model is analogous to the well-known double-branched similarity solutions of the

boundary layer equations for negative valuesof the pressure gradient para-

meter. 1 6 Now, such a feature endows the present analytical approach with the

inherent capability of giving a unified continuously-connected description of

both attached and full-separated flow states provided we "unhook" the pressure

field in the skin friction-pressure relation from a prescribed explicit de-

pendence on x and instead allow it to be coupled to the boundary layer by

viscous-inviscid interaction.* Thus, by interpreting Eq. 5 or Fig. 2 as a T

vs. C locus (instead of T vs. x) the physical solution can move along AB

with an increasing pressure toward separation, then from the upper to the

lower branch through separation into a separated flow region along BC with

17
* In the same manner as Lees and Reeves employed self-similar boundary layer

solutions in supersonic viscous-inviscid interaction problems by "unhooking"
them from the pressure gradient parameter.

10



decreasing interaction pressure, then back along CB through rising pressure.

toward reattachment and through reattachment followed by downstream post-

reattachment relaxation with decreasing pressure along BA.

Third, it is important to note that unlike previous solutions of the 
full

boundary layer equations, the approximate two-layer boundary layer 
model does

not give a singularity at the separation point; this is evident in Fig. 2,

where the slope of the wall shear stress at separation (dT/dx)sep is seen to

be finite (this can be also be verified by direct differentiation of Eq. 5

with respect to x). Interestingly enough, this result is in qualitative agree-

ment with experimental data and the predictions of exact numerical solutions 
of

the Navier-Stokes equations in adverse pressure gradients
1 8- 2 0 , both of which

indicate that dT/dx is finite (though large) as T -+ 0. Lee2 1 has shown in

fact that the usual boundary layer solutions
2 8 giving a separation point singu:

larity are not valid in the immediate vicinity of Xsep; when this is corrected,

a regular behavior through separation is obtained. Indeed, he further shows

by an asymptotic analysis of the Navier-Stokes equations 
near Xsep that to the

leading order of approximation the viscous flow near the surface is 
described

by precisely the inner layer flow model used herein. 
Additional support for

at least the approximate correctness of the present model on this point 
can be

obtained by examining the zero streamline * = 0 whose locus indicates where

the flow separates from the surface: integrating the inner velocity, profile

Eq. (4) with respect to y and using the matching relations, 
this locus is found

to be governed by y==0 
= 0 for T > 0 and in a reversed flow region by the

relation

S-The behavior near separation does not depend sensitively on N; for example,

the cube root of the right side of Eq. 5 evaluated at T = 0 (which is

approximately proportional to xse for linearly-retarded flow) decreases

by only 16% when N is changed fro 3 to 4.

11



dC " 6 N- 1
.... I =0 (9)

fB dx N(N -)yj N - 2  =0

Differentiating this with respect to x and setting y~=0 
= 0 at T = 0, Eq. (9)

predicts that the separation streamline leaves the surface at a finite angle 
y

given by

tany =  d7 sep  (10)

tany )sep esep

which under the assumption dp/dy = 0 is in exact agreement with the well-known

22
value derived from the full Navier-Stokes equations by Oswatitsch. Both separa-

tion and reattachment occur in a non-singular manner-at a well-defined acute

angle to the surface.

Aside from Fig. 2., a fourth noteworthy aspect of the present analysis is

the relative structure of the flow in a separation region predicted by the 
inner

layer flow model. Thus, in addition to the aforementioned zero streamline, the

zero velocity locus that delineates the extent of the reversed flow region 
is

found Eq. (4) to be governed by

dC N;1
2T, + 2 = 0 (1)

TCfB dx N(N-1) N-2 =0
f u= u0

In addition the conesponding zero velocity gradient locus (Bu/ay = 0) where the

maximum reversed flow speed occurs is given by

dC N-l

Tf B + _ [y (N-l)Y - = 0 (12)

Yj u - 0
1y

12



Since these locii derive from the inner layer solution, they must all lie

within 0 y < yj and this is indeed readily verified to be the case by com-

paring Eq. (6). Moreover, Eqs. (19), (11) and (12) predict that the ordinates

(Y)*=0 u=0 and (y) u/Wy=0 are approximately in the ratio 3:2:1 independent

of N; this agrees with the relative size of these ordinates shown in Leal's

Navier-Stokes solutions. 20

Fifth, it should be noted that governing model equations automatically

yield the correct dornstream solution [namely a flatplate boundary layer

corresponding to Cp,basic (xc)) far downstream where the pressure gradient

vanishes; for when dC /dx - 0 with x >> x , Eqs. 5 and 6 give T + i, y + 0
p c I

while Eqs. (7) yields the correct corresponding displacement thickness.

Sixth, shown in Appendix B the displacement thickness integral in Eq. 8b

has the important property of becoming vanishing small (with a conccmittantly-

vanishing x-derivative) at both x = x. and x = xf provided x. and xf are

chosen sufficiently small and large, respectively. Consequently, the inter--

action-induced pressure AC and its streamwise gradient and hence (by Eqs. 5

and 7) the corresponding shear and displacement perturbations all automatically

vanish at xi and xf to any desired degree of accuracy.

Allowance for an Initial Pressure Gradient

The foregoing analysis can be extended to include boundary layer flows

with a non-zero upstream favorable pressure gradient history in the region

0 < x < x by adapting the equivalent flat plate initial condition technique

of Curle.6 Thus if the inviscid flow velocity distribution ue(x) increases

to a maximum ue at the pressure minimum station x = x , the boundary layer
m

velocity profile at xm will be very similar to a Blasius profile based on

some equivalent length xm - xL if the equivalent origin xL is determined by

13



2  - m

requiring the same momentum thickness e* at xm  Equating * 2Yuem o

u 5dx given by the accurate Thwaites method
2 3 to the equivalent flat plate

value .45 ue(xm -x L ) yields

Xm

xL= X -J u/uem 5dx (13)

The subsquent boundary layer development in the adverse pressure 
gradient

region may then be treated by the foregoing model provided 
x is replaced by

S= x - xL and the skin friction and the pressure coefficient are defined 
in

terms of conditions at xm instead of xo .

The above equivalent origin approach can also be used to partially 
account

for the "memory" effect of the upstream adverse pressure gradient history on

the far downstream post-reattachment conditions in the case 
of the viscous-

inviscid interaction separation bubble problem, as discussed 
below.

3. ANALYTICAL SOLUTION

An analytical solution of the foregoing theoretical flow model 
can be

obtained which is a very helpful guide in constructing our 
numerical approach.

To bring out the essential ideas involved, we adopt the approximate displace-

ment thickness expression (7c) and neglect the 6*
2 term in the integrand

demominator of Eq. (8) [neither of these simplifications alters 
the basic

correctness of the- subsequent analysis]; then using the values of 6 and yj

given by Appendix A and Eq. (6), respectively, and noting that 6B* 1.73 x1/2

-1/4 -1/2
(1-Cp,basi)1/4 where E Re , we obtain from Eqs. (5b), (7c) and (8) the

following trio of equations that characterize our interacting 
triple-deck flow

model.:

14
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2 2 3 (._,
x (dp/dx) Cp = .0104 (1+2.02T)(1-T)(14)

P P
o

2 (d6*/dx)dC (15)= C -. Cpbasic x-

p p,basic r p,basic o x-C

3 2
.086(1-T) (1-C )

U1* ( 1/4(6 (x dC /dx)

Eq. (14) characterizes the overall pressure-shear force balance of the 
boundary

layer while Eq. (15) introduces the global effect of the displacement 
thickness

growth on the pressure distribution in subsonic flow, as well as 
containing the

"basic" non-interacting pressure distribution that characterizes the 
particular

problem at hand.

The trio (14)-(16) in general constitutes a difficult integro-differential

equation system to be solved for the three unknowns T, C and 6*. However, the

presence of the parameter e and the fact that it is very small 
under precisely

the high Reynolds number conditions appropriate to the present model suggests

that a perturbation approach is feasible
± in which the solution is expanded in

ascending powers of E, as follows:

C + AC + AC +.... (17a)
Cp. p,basic pl p2

T = Tbasic  + E TI  + 2 T2 +... (17b)

S =  dbasic + d + ... (17c)

24
t A similar approach was successfuly used by Ting to solve a massive blowing

problem having an analogous mathematical structure to the present one.
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That:is, since the displacement effect (within the accuracy of the boundary

layer approximation) and hence the induced pressure are everywhere of small

order e, the leading approximation is the non-interacting solution; the small

(order e) first interactive "correction" to this is obtained in terms of the

6* for the- "basic" flow. Thus, for example, substitution of expansions (17)

into Eqs. (14)-(17) yield to first order that

Sd(d )ldx]
2 --C dbasic dc (18)

p p,basic x -

S- (l-Tbasic )(1+ 2 .0 2 Tb ) C  + dC /dx

S --3 .02basic Cp,basic dpbasic/

(19)

with analogous expressions for ACp 2 (involving an integral of d dl/dx) and T2'

etc. This procedure has thur converted the original problem involving an

integral equation into a succession of quadratures of known displacement

thickness functions.

It is pointed out that the "basic" solution appearing in the foregoing

analysis can be approximated-by any reasonable distribution without

altering the essential correctness or accuracy of the analysis, at least to

first order in the interaction effects. Consequently, in the case where separa-

tion would occur in the basic flow, we may use an intelligent non-singular pro-

jective estimate of the 6* distribution across the length of the reversed flow

in evaluating Eqs. (18) and (19). In this manner, our analytical solution

provides the suggestion of (and support for) the streamwise-pass iterative

method of numerical solution discussed in the next section.

It-is understood that £ In E type terms may intervene between c and e in

Eqs. (17).
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4. NUMERICAL SOLUTION SCHEME

Global Iteration Approach

We have seen in Section 2 that the present triple-deck flow model has 
the

inherent capability of giving a unified, continuously-connected description 
of

both attached and fully-separated flow states provided we "unhook" the 
pressure

field in the skin friction-pressure relation from .a prescribed explicit de--_:_

pendence on x and instead allow it to be coupled to the boundary layer by global

viscous-inviscid interaction. The resulting solution can be thought of as

being defined by the intersection of two locii (see 
Fig. 3): the locus of all

possible shear vs. pressure gradient values for the 
boundary layer as defined

by Eq. 5, and the "interaction" locii of T vs. pressure at various 
x implied by

the integral of 6*(T,C ) in Eq. 8. The numerical solution of this problem is a

difficult one since inclusion of the global subsonic interaction makes th pro-

blem quasi-elliptic and hence introduces the need to impose downstream boundary

conditions. However, the discussion in Section 3 suggests that the most ex-

pedient approach is to use a global iteration method involving successively-

refined streamwise passes. A very similar type of scheme has been proposed

recently by Lees and Su for solving a stratified flow separation problem
2 5 and

by Jobe and Burggraf for interacting trailing edge flow.26

The manner of implementing this approach is as follows. Starting with a

prescribed basic pressure distribution (which defines the specific 
problem),

the complete non-interactive solution is calculated along the body, stopping

in the event of incipient separation at some station x = xl slightly 
upstream

of the separation point. Following Catherall and Mangler
2 7 we then project

from this station a first estimate of the downstream behavior of 6* throughout

the entire interaction zone assuming a regular continuous behavior; specifically,

17



we used a cubic polynominal projection 6* = 6* (xl) + al(x-x1) + a2 (x-x1) +

a3 (x-x1 
3 where al = (d6*/dx) 1 while a2 and a3 are determined by requiring

that 6* and d6*/dx be equal to local flat plate values at some first guess of

the downstream interaction-termination distance x.. Having such a reasonably-

behaved first approximation for 6*(x) over the entire flow length, one can

make a corresponding smoothed first estimate of the displacement effect ACpl

on the pressure distribution and thereby provide a basis for performing another

streamwise pass in which the viscous-inviscid interaction is now included.

According to our analytical solution (Eq. 17) and previous discussion, the

results so obtained for T.and C C asi+ AC pshould in fact be a fairly
p p,basic pl

good first approximation to the final correct interactive values when the

Reynolds number is large, provided xf has been chosen sufficiently large.

The second streamwise pass through is begun at some suitably small value

of the upstream interaction-starting point xi. Retaining the aforementioned

first guess for xf the numerically-smoothed,interaction-odified pressure dis-

tribution Cpl = Cp,basic + (ACp)1 (where subscript 1 denotes the first itera-

tion) is used in Eq. (5b) to obtain an improved estimate of the skin friction

distribution. Separation and penetration into the reversed flow region may now

be allowed along the negative T branch of the T vs. C curve (such as segment

BC in Fig. 2); as the flow proceeds downstream the effect of interaction dies

down and the solution moves back through reattachment, relaxing toward a local

flat plate behavior at the constant Cp,basic(xc) until finally the interaction

effectively ceases at the downstream location xf. Correspondingly, a new cor-

rected displacement thickness distribution can be calculated directly from

Eq. 7 (the polynomial projection now being discarded) and hence an improved

interaction pressure correction (AC p) 2 for the second streamwise pass, and so

18



on. The modified pressure distribution for this second and all subsequent

passes may be calculated by correcting the 
previous result, avoiding further

direct use of C p,basic(x); thus for the n-th iteration with n > 2, Cp,n(x) =

Cp,n-1(X) + (ACp,n - ACp,n-1). These iterative streamwise passes are carried

out until the solution no longer changes to within a specified 
amount. In

general, the resulting skin friction and local pressure 
may not agree suf-

ficiently with the desired downstream boundary conditions 
appropriate to the

particular problem, implying that the original 
estimate of xf was too small.

A series of larger xf values are then used, each accompanied 
by the aforemen-

tioned sequence of streamwise pass calculations, until the downstream 
boundary

conditions of vanishing AC and dC /dx are satisfied to within the desired
P P

degree of accuracy.

There are several aspects of the aforementioned numerical 
scheme that

should be noted. (a) Owing to T and AC being defined in reference to tile
P

local basic flow,and the previously-noted property 
of Eq. 8 that both ACp and

dAC /dx can be made vanishingly small at a large and small 
enough x = xf and

x,, respectively, it is seen that each streamwise 
pass inherently satisfies

the correct initial and downstream conditions. In other words, our formulation

insures that every iteration is automatically "tied down" to 
the proper non-.

interactive end points that define the basic problem. 
(b) In view of the

experience of Jobe and Burgraf
2 6 and others,29 convergence of the aforemen-

tioned iteration process may be difficult to achieve 
without the use of "under-

relaxation," in which only a fraction (usually half or less) of the correction

to * is fed back to obtain a new interacted pressure. A schematic illustra-

tion of the proposed global iteration procedure involving 
80% under-relaxation

is shown in Fig. 4. (c) It is important to note that the present solution
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method does not encounter any Crocco-Lees throat-type singularity. This is

due to the fact that we do not handle the viscous-inviscid interaction 
as an

initial value problem (which Garvine has shown always leads to such a down-

stream singularity) but instead as an effective boundary value problem: 
our,

n-th iterative calculation of the interacting flow is always based on the

known 6*(x) and C (x) distributions throughout the flow pertaining to the pre-

vious n-1 streamwise pass, with the first streamwise projection done in 
the

manner of Catherall and Mangler. 2 7 Shamroth and McDonald31 have also shown that

this approach provides an adequate treatment of upstream influence effects 
and

downstream boundary conditions without introducing streamwise saddle point-type

singularities. (d) In carrying out ther.solution, it is possible to further

improve our treatment of the post-reattachment flow by incorporating 
a correction.

to the effective origin seen by the flow due to its' upstream adverse pressure

gradient history. Thus, while in the case of an initial favorable pressure

gradient the flow quickly forgets its history, the thickening 
and separation

of the boundary layer associated with the traversal of an unfavorable pressure

gradient region is not so readily forgotten even by the flow 
well downstream of

reattachment. Hence the velocity profile at the interaction-cessation point xf

will have a Blasius shape but with flat plate displacement thickness and skin

friction values based not on xf but instead on xf + xT where xT is some 
effec-

tive origin shift accounting for the upstream adverse pressure gradient history.

Owing to the neglect of pressure gradient effects on the 
head loss in the outer

layer (Eq. 1), the present theory does not include this memory effect. However,

xT can be estimated from the equivalent momentum thickness 
technique described

in Section 2. Thus we obtain
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XT + x e dx (20)

e,o

where as a first approximation in evaluating the integral, the viscous-inviscid

interaction effect on the u e(x) history has been neglected, i.e., we have 
used

the given basic inviscid flow solution for ue

Some PreliminaryResults

An attractive basic flow for theortical studies of separation is the

special case of Howarth's linearly-decelerating flow
1 5 in which the basic adverse

pressure gradient is applied right from the leading 
edge [that is, there is no

boundary layer preceeding the pressure rise: xo = 0, 6*(x o ) = 0]. By cutting

off this basic pressure gradient, reattachment and various finite 
lengths of

separation bubble flow can be created (Brileyl
9 has obtained some exact numeri-

cal solutions of the Navier-Stokes equations for several 
such cases which we

also shall consider). The downstream boundary conditions appropriate to this

class of flows are that the flow attain an appropriate local 
zero pressure

gradient with Blasius skin friction behavior at 
some distance xf downstream

following reattachment where interaction ceases.

The present investigation has been addressed to the specific 
examples of

linearly-decelerating inviscid flow considered by Brileyl9 involving 
two dif-

ferent lengths of basic adverse pressure gradient, one of which causes separa-

tion and one of which does not. His skin friction predictions for these cases

(labeled Two and One, respectively) are illustrated in Fig. 5. 
It is interesting

to note that whereas Howarth's boundary layer solution predicts separation 
for

both cases, Brileys results predict separation further downstream with 
in fact

no separation at all in Case 1. This serves to emphasize that predictions of
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separation by classical boundary layer solutions neglecting 
viscous-inviscid

interaction are not always reliable. Note also from Case 2 that both separa-

tion and reattachment occur without any singularities.

An illustration of the typical displacement thickness obtained 
by the

polynomial-projection procedure used in the first 
streamwise pass of our pro-

posed iteration method is given in Fig. 
6 for Case 2. Our first streamwise-

projected 6* distributions for both 
Cases 1 and 2.(based on the crude first

estimate xf .50 - see Fig. 5) are compared with Briley's results in Fig. 7.

In general, it appears that this "first guess" 
procedure yields reasonably

good results with a reasonable choice of xf. Note that the present theory does

not give quite the same value of the downstream 
local Blasivs thickness because

of its very approximate account of the upstream history 
effect on the effective

origin.

The first interactive pressure correction ACp associated with 
the integral

of our project 6* for Case 2 is shown in Fig. 8a. This is a rough result only,

having been obtained with only a crude numerical 
integration routine and devoid

of the Lighthill correction for the leading edge singularity. 
Nevertheless,

when a smoothed-out curve fit of this result (shown dashed) 
is subsequently

added to Cp,basic , the resulting first interactive pressure distribution Cpl

(Fig. 8b) is quite reasonable: the effect of interaction has appreciably

smoothed and broadened out the basic pressure 
distribution so as to relieve

the adverse pressure gradient preceeding separation (thereby explaining why

separation tends to be significantly delayed compared to classical 
boundary

layer theory predictions). It can also be seen that this interacted 
pressure

distribution tends to form a plateau in the separated flow 
region, although

this tendency is not as pronounced here as it would be 
in supersonic flow owing

to the difference in shapes that constant pressure 
surfaces assume in subsonic
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vs. supersonic irrotational inviscid flow. Downstream, reattachment occurs

through a continuous monotonic pressure rise. All these features are in

general agreement with experimental observation.
3 2

Our current efforts are involved with improving the original implementive

techniques of the global iteration procedure (as regards a more accurate numeri-

cal evaluation of the interaction integral and incorporating underrelaxation

into the iteration scheme) so as to extend the foregoing preliminary results

to iteratively-converged final answers including wall shear distributions and

velocity profiles along the entire length of the interaction and separated flow

regions. Upon achieving this, it is then planned to run some parametric studies

of the linearly-decelerating problem varying the length and shape of the adverse

pressure gradient region, the value of Cp,basic(xc), Reynolds number, and

allowing non-zero initial boundary layer thickness (xo > 0). Hopefully, some

cases might also be run where at least limited comparisons could be made with

experimental data on airfoil leading edge laminar separation bubbles
3 3

5. CONCLUSION

Although approximate the present theory has the virtues of sound physical

modeling of the essential flow features including viscous-inviscid interaction

and upstream influence, an analytical formulation which is readily implemented

numerically, and good engineering accuracy. The triple-deck model has the in-

herent capability of passing smoothly through a separation point into a reversed

flow region and back through a point of reattachment without singularities. In

addition to providing a method for obtaining approximate engineering solutions

of boundary layer separation problems, the present theory would be a useful

analytical tool for simulating the process of reattachment itself by providing
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suitable fully-separated shear flow configurations. Furthermore, the present

theory may serve as a valuable aid in the development of 
more rigorous and

detailed exact numerical methods for high Reynolds number flows by providing

estimates of the location and mesh size requirements of the 
high shear and

reversed flow regions. Finally, we reemphasize that the triple-deck model

approach is applicable not only to flows with reattachment 
but also appears

adaptable to those where other types of downstream 
condition pertain such as a

wake.

Many improvements and extensions on the present analysis 
appear possible.

For example, the assumption that the total head loss in the outer layer 
isnot

influenced by the pressure gradient can be relaxed, as can the neglect 
of the

convective inertia effects in the inner layer (this would enable the theory to

treat basic pressure distributions with maxima or minima). Extension can also

be made to include compressibility effects for either subsonic, 
transonic or

supersonic flow, including heat and mass transfer. Furthermore, it is clear

from Stratford's pioneering study of the two-layer model for non-interacting

incipiently-separated turbulent boundary layers
34 that the present approach can

extended to interacting turbulent flows provided a suitable eddy viscosity

model for the strongly-adverse pressure gradient and reversed flow 
regions is

available. Finally, the theory can be applied to treat three dimensional 
flows

since there is nothing inherent in the character of either 
the inner or outer

layer approximations that cannot be extended to 
include the presence of a cross

flow.
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APPENDIX A

Approximate Expression for Displacement Thickness

A simplified version of Eq. (7b) can be derived by developing an analyti-

cal approximation to the integral term as follows. Noting that the radical

in the integrand is simply Uouter , and that the equality of stream function

requires outer dy = UBdyB , we obtainouter BB

1- - dy = -y 6 - dl (A-1)

e . -e

- 6 - y. BL S d - -u-de

'y 6 B B.
=-Y - - - B2 -

(A-2)

where n = y/6B , 6B and 6B* pertain to the local basic inviscid flow u e(not

u eo), and the Karman-Pohlhausen polynomial approximation u B(n)/u e = 2n - 2n +

n has been used to evaluate the integral. Then by neglecting n3  and nig as

small compared to unity, we obtain upon substitution of A-2 in Eq. (7b) the

final result given by Eq. (7c).

In the aforementioned expressions for 6*, the value of the conespanding

boundary layer thickness 6 can be estimated from the well-known Thwaites

formula as

6= * ~315 45 u 6 U dx
6 * 37 u 6 e

e 0
0

(A-3)
U 

e /YE dx

e o

x u



APPENDIX B

Properties of the Displacement Thickness Integral

The induced pressure field is governed by the global effect of the dis-

placement thickness as shown in Eq. 8. Assuming for the moment that the viscous

interaction-induced pressure gradient effect on 6* is confined to some region

xi  X xf, the integral in this Eq. can be written as

d6 *d* x B Xf dS* dC
2 (x-) 2 2  

(x-) 2 + 2  ji (x)d- d (x- (B-l)
o (x-0 2 2 o (x-)2*2 i (x-)2 + 2  xf (x-)2+6*2

where xi(0O) and xf >> x are the effective start and end of the interaction

region, respectively. Here, the first and third integrals account for the con-

stant pressure regions of the basic flow while the second is the contribution

of the interaction region. We now consider Eq. B-1 applied to some stream-

wise point x within the interval x.i x <xf and proceed to examine each of the

three integrals on the RHS.

Taking note of the fact that 6 - 1.73c (x -Cbsic) / 2 and choosing
B p,basiccoosing

x. small enough that C(xp,basi c  ) ~ 0, the first integral can be rewritten

as

.x x.

(x-C)(d6 */dx)dE r
1. 3 o (xej 2-() - [ (x0E) W2()

Now since 6*~c is small compared to unity and since Eq. B-1 pertains to

x > xi , 6* makes a significant contribution to the integrand only within a

distance, 6B *(xi ) of the end point = xi; consequetly, this RHS integral can
B i I it 7 to ths integral c

be further decomposed into the two parts



t jx
i d 1i (x -) d_

which standard integral tables evaluate as

:2 2
-- log X-(i-)+ ) X-- i0 + log 2 2 (B-3)

-- x-(xvi (x-x.) 2+ +2Y.(x-x )

We note that the second term vanishes while the first gives a non-singular

result at x - xi . Most importantly, we note that choosing xi  = 6 *(xi )

eliminates the first term at all x > xi , leaving only the second term which

vanishes at x = x. and as x >> x.. The first integral in B-i can therefore
i --

be made negligiable by this suitably small choice of x..t

Substituting the value of 6 * into the third integral on the RHS of (B-l)

and proceeding in the same manner as we- did with (B-2), this integral can be

written

d * x +k

B dg 00 f
2 d x  d 4 1 (x-E)dC (B-4)

.73 o (-) 2+6 xk (x-C) x (x-0)2 + k 2

where the 6*2 term in the integrand is presumed to have a negligable effect

beyond some small distance k from xf. Again using standard integral tables,

the RHS becomes

1 f+k-x 1 2x +k-x) 2+k 2
= log ; 0g 2

x +k+x-2x(x +k) 2f (xf-x)2+k

This choice of x. is analogous to the use of a Lighthill correction factor in

Eq. .8c to wipe out the leading edge contribution in the alternative singular

airfoil integral formulation.
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which we see vanishes at x =xf and as x << x for all k provided xf is taken

sufficiently large.

We have thus shown that provided xi and xf are chosen sufficiently small

and large, respectively, only the second integral on the RHS of Eq. B-1 does in

fact effectively contribute to the induced pressure field as assumed, and that

ACp vanishes at these end points. Moreever, since this type of integral is in

effect a solution to LaPlaces Equation, dAC p/dx inherently vanishes at these

*26
points as well. In carrying out numerical evaluations of the second integral,

it proves convenient to elimmate the derivative of 6* through integration by

parts so as to .obtain

Xf d6a '
(x)2--- * 2 2
_ dx (x-5) [(x-g) .-64 6*
(x- (X2 (x52 2 *2 dF (B-5)

X- 2 +6 2 ( 2 * 2( +x. (x) x. x
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Separation Region
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Fig.7: Interacted Displacement Thickness Solution for

Separated and Unseparated Linearly Retarded Flow
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Fig. 8 Viscous--Inviscid Interaction Effecton Pressure Distribution.
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